Ethernet in the First Mile – A Service Provider Perspective

Charles Cook

Qwest

303-896-5652 charles.cook2@qwest.com

Important Carrier Considerations Relative to Deployment of New Technologies

Cost effective

- Significant Market Potential
- Scaleable
- Multiple Sources
- Vendor Stability
- Interoperability
- Standard interfaces
- Long reach

Operational Considerations

- Compatibility w/legacy OSS
 - Provisioning
 - Inventory
 - Billing
- Spectrum Compatibility
- Reliability and Maintenance
 - Environment Specifications
 - Remote test capabilities
 - Performance Monitoring Capabilities
 - Redundancy

Customer Satisfaction

Service Level Agreements

Ethernet in the First Mile - Overview

EFM over Fiber

- P2P Backhaul or direct access
- P2MP EPON for FTTx

Pair-bonded EFM

- SHDSL PHY over Copper
- Symmetric
- Extend bandwidth off of fiber rings
- Bridge bandwidth gap between copper DS1s and OC-x

EFM Copper (single pair)

- Long Reach: SHDSL, Symmetric, no POTS, business
- Short Reach: VDSL, Symmetric or Asymmetric, high bandwidth, residential
- Ethernet access

Pair-bonding

Algorithms have been standardized in:

- T1E1.4: ATM, Packet, TDIM
- ITU-T Q.4/SG15: G.bond (essentially the same as T1E1.4)
- IEEE 802.3ah: EFM

TDIM: protocol-independent bonding with inverse muxing

Delivers Ethernet, ATM and TDM traffic over multiple DSL physical links

<u>ATM:</u> bonding multiple DSL links to transport ATM streams

- Less overhead than IMA
- Supports wide variety of configurations (# of pairs, disparate data rates, delay, dynamic removal and restoration of pairs)

Ethernet: optimized for transport of Ethernet frames over xDSL

- Extends IEEE 802.3ah EFM copper technologies
- Supports SHDSL (G991.2), VDSL (G993.1), ADSL and other xDSL technologies as they emerge

While algorithms are designed for pair-bonding across multiple pairs for symmetrical business applications, they can also be applied to 2-pair CPE for asymmetric residential applications

- Currently requires 2 CPE chips (2-Port CPE chips currently not available)
- 2-Port CPE cost is estimated to be 30% over single-port CPE
- Qwest has informed chip vendors of interest in 2-port CPE chips w/pair-bonding
- 2-port ADSL2+ CPE chips would enable the triple-play

EoCU Benefits

- Enables carriers to make more efficient use of capital through use of existing copper pairs to meet bandwidth needs of customers
- Enables quicker response time to customer requests
- Maximizes bandwidth capacity
- Spectrally friendly
- Provides increased reliability through the use of multiple pairs
- Enables end-to-end Ethernet services
- Facilitates migration from ATM to Ethernet networks
- Enables the ability to ride the Ethernet cost curve

Graphics: Actelis

Qwest EFM Interest

Providing access to Qwest Products (MOE, QWave, etc., ...)

Extend bandwidth off of fiber rings for business customers

Expand backhaul capacity for access products

Band Plans

Qwest Metro City Locations

MOE Architecture w/EFM Access

EFM can be used to provide Ethernet access to the Qwest Metro Optical Ethernet Architecture

Sample Study of Buildings w/o Fiber

Buildings in survey without fiber

% of Total

0-6 K. Ft. 20%

6-10 K. Ft. 21%

10-15 K. Ft. 25%

15 K. Ft. > 34%

- 78% of buildings have > 25 spare copper pairs
- Opportunity space exists for the deployment of EoCU

Ethernet Backhaul/Access Architecture

Ethernet over Copper

EFM Technical Trial Architecture

Technical Trial
Ready Product for Deployment
Deployment

YE2004

1Q05

1Q05

38 Mbps over 8 copper pairs

Summary

Evaluation and potential deployment of new and emerging technologies involves multiple considerations

EFM provides an access medium to enable end-toend Ethernet services

In the absence of fiber, EFM extends more bandwidth towards the customer

EFM has potential

